Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.586
Filtrar
1.
PLoS One ; 19(4): e0300192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578725

RESUMEN

The current bag filter system used by railway ballast bed coal suction vehicles for cleaning coal dust from railway tunnels has low operational efficiency and generates significant volumes of dust. This paper describes a simulation test unit designed to enhance the dust removal performance in railway tunnels. The flow field inside the simulation test unit is investigated under different operating conditions through numerical simulations, and the variations in air volume and working resistance, total dust collection efficiency, and optimal operating parameters of a pulse cleaning system are identified through a series of experiments. The numerical results show that the pulse cleaning system does not significantly affect the uniformity of the flow field distribution at the bottom of the filter cartridge during the process of operation. The experimental research indicates that the simulation test unit satisfies the design requirements, achieving an average total dust removal efficiency of 99.93%. A field application shows that the total dust mass concentration at the operator position can be reduced from 335.8 mg∙m-3 to 4.2 mg∙m-3, effectively improving the operating environment within the tunnel.


Asunto(s)
Minas de Carbón , Carbón Mineral , Carbón Mineral/análisis , Succión , Polvo/análisis
2.
PLoS One ; 19(4): e0300102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557823

RESUMEN

Backfill mining is an effective way to solve environment pollute, surface subsidence, and groundwater system damage which caused by coal mining. However, the complex underground environment may change the physical and mechanical properties of the backfill body, which poses a risk of strength failure. This paper analyzed the failure of gangue-based cemented backfill body which made up of gangue and fly ash. The results show that physicochemical reactions will generate quartz, kaolinite, and other high-strength substances; hydration reaction between the fine particles will generate hydrocalcium silicate and other C-S-H gels, they wrapped gangues as a whole, which provide a high strength of the cemented backfill body. Several experiments were carried out in order to find the reason for failure in samples under loads. The conclusion drawn as following: (1) When the load is large, the cracks extend from the surface of the samples to the interior, at the same time, the length and width of the cracks increasing obviously and connecting as net. Especially the external load exceeds the peak intensity. (2) The relationship between sample failure and pores is weak, but obvious with crack development, especially the cracks connected as a net. (3) The interface structure formed by gangue is an important source of crack development and, thus, will stimulate the development of cracks.


Asunto(s)
Minas de Carbón , Minas de Carbón/métodos , Caolín
3.
PLoS One ; 19(4): e0301923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652724

RESUMEN

The chemical and pore structures of coal play a crucial role in determining the content of free gas in coal reservoirs. This study focuses on investigating the impact of acidification transformation on the micro-physical and chemical structure characteristics of coal samples collected from Wenjiaba No. 1 Mine in Guizhou. The research involves a semi-quantitative analysis of the chemical structure parameters and crystal structure of coal samples before and after acidification using Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) experiments. Additionally, the evolution characteristics of the pore structure are characterized through high-pressure mercury injection (HP-MIP), low-temperature nitrogen adsorption (LT-N2A), and scanning electron microscopy (SEM). The experimental findings reveal that the acid solution modifies the structural features of coal samples, weakening certain vibrational structures and altering the chemical composition. Specifically, the asymmetric vibration structure of aliphatic CH2, the asymmetric vibration of aliphatic CH3, and the symmetric vibration of CH2 are affected. This leads to a decrease in the contents of -OH and -NH functional groups while increasing aromatic structures. The crystal structure of coal samples primarily dissolves transversely after acidification, affecting intergranular spacing and average height. Acid treatment corrodes mineral particles within coal sample cracks, augmenting porosity, average pore diameter, and the ratio of macro-pores to transitional pores. Moreover, acidification increases fracture width and texture, enhancing the connectivity of the fracture structure in coal samples. These findings provide theoretical insights for optimizing coalbed methane (CBM) extraction and gas control strategies.


Asunto(s)
Carbón Mineral , Difracción de Rayos X , Carbón Mineral/análisis , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos/química , Microscopía Electrónica de Rastreo , Minas de Carbón
4.
Sci Total Environ ; 924: 171612, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462010

RESUMEN

Various plant functional groups (PFGs) used in the reclamation of post-mining heaps may differ in their nutrient uptake efficiency and thus in their effect on the ecosystem development. The effect of PFGs may be additionally modified by the applied reclamation measures such as e.g. topsoiling. In this study we compared the nutrient uptake efficiencies and plant stoichiometry for two PFGs (grasses and forbs) growing on the sites reclaimed by applying topsoil (TS) and unreclaimed sites on carboniferous bare rock (BR) in hard coal spoil heap in Upper Silesia (southern Poland). Basic soil parameters, including pH, texture, soil organic carbon, and nutrients (N, P, K, Ca, and Mg), were measured, and the aboveground plant biomass and nutrient content in plant tissue were determined. Forbs were characterized by a larger biomass and higher nutrient concentrations (except for P) than grasses. The TS treatment supported higher concentrations of N and P in plant tissues but not to the level ensuring more significant primary biomass production. The nutrient concentration and elemental stoichiometry in plant tissue indicated that N was the primary limiting element. However, the major growth limitation for N-fixing forbs was from P. Forbs were much more efficient in nutrient uptake than grasses, independent of the reclamation treatment. Therefore, they stimulate nutrient cycling in the restored ecosystems more than grasses.


Asunto(s)
Minas de Carbón , Ecosistema , Polonia , Carbono , Suelo/química , Plantas , Poaceae
5.
Int Arch Occup Environ Health ; 97(4): 473-484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530481

RESUMEN

OBJECTIVE: Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS: We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS: Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION: The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.


Asunto(s)
Enfermedades Cardiovasculares , Minas de Carbón , Exposición Profesional , Rigidez Vascular , Humanos , Enfermedades Cardiovasculares/epidemiología , Índice Tobillo Braquial , Análisis de la Onda del Pulso , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Polvo , Carbón Mineral , China/epidemiología
6.
Environ Geochem Health ; 46(4): 120, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483685

RESUMEN

With the continual advancement of coal resource development, the comprehensive utilization of coal gangue as a by-product encounters certain constraints. A substantial amount of untreated coal gangue is openly stored, particularly acidic gangue exposed to rainfall. The leaching effect of acidic solutions, containing heavy metal ions and other pollutants, results in environmental challenges such as local soil or groundwater pollution, presenting a significant concern in the current ecological landscape of mining areas. Investigating the migration patterns of pollutants in the soil-groundwater system and elucidating the characteristics of polluted solute migration are imperative. To understand the migration dynamics of pollutants and unveil the features of solute migration, this study focuses on a coal gangue dump in a mining area in Shanxi. Utilizing indoor leaching experiments and soil column migration experiments, a two-dimensional soil-groundwater model is established using the finite element method of COMSOL. This model quantitatively delineates the migration patterns of key pollutant components leached from coal gangue into the groundwater. The findings reveal that sulfate ions can migrate and infiltrate groundwater within a mere 7 years in the vadose zone of aeration. Moreover, the average concentration of iron ions in groundwater can reach approximately 58.3 mg/L. Convection, hydrodynamic dispersion, and adsorption emerge as the primary factors influencing pollution transport. Understanding the leaching patterns and environmental impacts of major pollutants in acidic coal gangue is crucial for predicting soil-groundwater pollution and implementing effective protective measures.


Asunto(s)
Minas de Carbón , Contaminantes Ambientales , Contaminantes del Suelo , Carbón Mineral/análisis , Contaminación Ambiental , Suelo , Iones , China , Contaminantes del Suelo/análisis
7.
Environ Geochem Health ; 46(4): 141, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491301

RESUMEN

Groundwater pollution in the Pingshuo mining area is strongly associated with mining activities, with heavy metals (HMs) representing predominant pollutants. To obtain accurate information about the pollution status and health risks of groundwater, 189 groups of samples were collected from four types of groundwater, during three periods of the year, and analyzed for HMs. The results showed that the concentration of HMs in groundwater was higher near the open pit, waste slag pile, riverfront area, and human settlements. Except for Ordovician groundwater, excessive HMs were found in all investigated groundwater of the mining area, as compared with the standard thresholds. Fe exceeded the threshold in 13-75% of the groundwater samples. Three sources of HMs were identified and quantified by Pearson's correlation analysis and the PMF model, including coal mining activities (68.22%), industrial, agricultural, and residential chemicals residue and leakage (16.91%), and natural sources (14.87%). The Nemerow pollution index revealed that 7.58% and 100% of Quaternary groundwater and mine water samples were polluted. The health risk index for HMs in groundwater showed that the non-carcinogenic health risk ranged from 0.18 to 0.42 for adults, indicating an acceptable level. Additionally, high carcinogenic risks were identified in Quaternary groundwater (95.45%), coal series groundwater (91.67%), and Ordovician groundwater (26.67%). Both carcinogenic and non-carcinogenic risks were greater for children than adults, highlighting their increased vulnerability to HMs in groundwater. This study provides a scientific foundation for managing groundwater quality and ensuring drinking water safety in mining areas.


Asunto(s)
Minas de Carbón , Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Monitoreo del Ambiente , Metales Pesados/análisis , Agua Subterránea/química , Medición de Riesgo , China , Contaminantes del Suelo/análisis , Suelo
8.
J Hazard Mater ; 469: 133880, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430592

RESUMEN

This study comprehensively investigated mercury (Hg) contents of various environmental compartments in a typical antimony-coal mining area with intensive industrial activities over the past 120 years to analyze Hg environmental behaviors and evaluate Hg risks. The total mercury (THg) contents in river water, sediments, soils, PM10, dust falls, vegetables and corns were 1.16 ± 0.63 µg/L, 2.01 ± 1.64 mg/kg, 1.87 ± 3.88 mg/kg, 7.87 ± 18.68 ng/m3, 13.01 ± 14.53 mg/kg, 0.30 ± 0.34 mg/kg and 3.11 ± 0.51 µg/kg, respectively. The δ202Hg values in soils and dust falls were - 1.58 ∼ 0.12‰ and 0.25 ∼ 0.30‰, respectively. Environmental samples affected by industrial activities in the Xikuangshan (XKS) presented higher THg and δ202Hg values. Binary mixing model proved that atmospheric deposition with considerable Hg deposition flux (0.44 ∼ 6.40, 3.12 ± 2.20 mg/m2/y) in the XKS significantly contributed to Hg accumulations on surface soils. Compared with soils, sediments with more frequent paths and higher burst probabilities presented higher dynamic Hg risks. Children were faced higher health risk of multiple Hg exposure than adults. Furthermore, the health risk of THg by consuming leaf vegetables deserved more attention. These findings provided scientific basis for managing Hg contamination.


Asunto(s)
Minas de Carbón , Mercurio , Niño , Humanos , Mercurio/análisis , Antimonio , Ecosistema , Minería , Monitoreo del Ambiente , Sedimentos Geológicos , Suelo , Verduras , Polvo
9.
Sci Total Environ ; 923: 171454, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438038

RESUMEN

Appraising the activity of soil microbial community in relation to soil acidity and heavy metal (HM) content can help evaluate it's quality and health. Coal mining has been reported to mobilize locked HM in soil and induce acid mine drainage. In this study, agricultural soils around coal mining areas were studied and compared to baseline soils in order to comprehend the former's effect in downgrading soil quality. Acidity as well as HM fractions were significantly higher in the two contaminated zones as compared to baseline soils (p < 0.01). Moreover, self-organizing and geostatistical maps show a similar pattern of localization in metal availability and soil acidity thereby indicating a causal relationship. Sobol sensitivity, cluster, and principal component analyses were employed to enunciate the relationship between the various metal and acidity fractions with that of soil microbial properties. The results indicate a significant negative impact of metal bioavailability, and acidity on soil microbial activity. Lastly, Taylor diagrams were employed to predict soil microbial quality and health based on soil physicochemical inputs. The efficiency of several machine learning algorithms was tested to identify Random Forrest as the best model for prediction. Thus, the study imparts knowledge about soil pollution parameters, and acidity status thereby projecting soil quality which can be a pioneer in sustainable agricultural practices.


Asunto(s)
Compuestos Azo , Minas de Carbón , Metales Pesados , Contaminantes del Suelo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Diamante/análisis , China , Monitoreo del Ambiente
10.
Artículo en Chino | MEDLINE | ID: mdl-38403418

RESUMEN

Objective: To study and compare the occupational exposure limits (OELs) of coal dust between China and foreign countries, understand the OEL of coal dust in China, and provide data and basis for revising the OEL of coal dust in China. Methods: In August 2023, by searching the official websites of limits setting institutions in relevant countries and regions at home and abroad, collecting and sorting out the OELs of coal dust issued by 10 limit setting institutions in 6 countries and the background information of the formulation, and conducting specific analysis on the classification, limit level and formulation principles of coal dust OEL in each country/institution. Results: In China and Japan, the total dust and respirable dust of coal dust OEL were established respectively, while in other countries, only the time-weighted average concentration (TWA) of respirable coal dust exposure was established. The TWA prescribed by China's Notional Health Commission, the United States Occupational Safety and Health Administration (OSHA) , the United States Mining Safety and Health Administration (MSHA) and the Australian Safety Work Bureau when the SiO(2) content was less than 5% were 5, 2.4, 2 and 3 mg/m(3) respectively. China GBZ 2.1-2019 sets the limit of 2.5 mg/m(3) for respirable coal dust with SiO(2) content less than 10%. The TWA set by the American Conference of Government Industrial Hygienists (ACGIH) and the South African Department of Mines and Energy (DME) for anthracite coal were 0.4 and 0.8 mg/m(3), respectively, and bituminous coal or lignite were 0.9 and 1.8 mg/m(3), respectively. The respirable coal dust TWA set by the National Institute for Occupational Safety and Health (NIOSH) in the United States was 1 mg/m(3), and the TWA set by the New Zealand Work Safety Authority was 3 mg/m(3). Conclusion: At present, the OEL of coal dust in China is at a relatively loose level, and it is suggested to further explore the possibility of revising coal dust OEL.


Asunto(s)
Contaminantes Ocupacionales del Aire , Minas de Carbón , Exposición Profesional , Estados Unidos , Dióxido de Silicio/análisis , Carbón Mineral , Australia , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Polvo/análisis , China , Contaminantes Ocupacionales del Aire/análisis
11.
PLoS One ; 19(2): e0298329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38412183

RESUMEN

Monitoring the temperature to determine the fire source locations is essential for controlling the spontaneous combustion in the goaf. Optical fiber sensors are employed to measure the temperature distribution in the goaf. However, due to changes in the geological conditions and the influence of the falling rocks in the goaf, only sensors on the upper side of the uncompacted goaf, due to inclination and coal pillar, may remain. Unilateral sensors are located on the upper side of the goaf, while fire occurs in the center. To investigate the issue with linear unilateral sensors, a two-dimensional inverse method has been developed to determine the location of fire sources by considering heat transfer after a fire inside the goaf. The equations were theoretically solved using Green's function method to obtain the internal temperature distribution of the physical model of the goaf. Sensitivity analysis identified the most crucial parameters in the process of spontaneous heating at different temperature. The fire source location can be determined using a loop method based on the model calculations. We considered a case to validate the model. Accurately identifying the fire source location in the goaf using the unilateral sensors has an essential theoretical and practical significance for fire prevention and fighting.


Asunto(s)
Minas de Carbón , Incendios , Fibras Ópticas , Minas de Carbón/métodos , Combustión Espontánea , Carbón Mineral
12.
PLoS One ; 19(2): e0296932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394262

RESUMEN

The delineation of the open-pit mining boundary, particularly in the context of medium to long-term planning, forms the foundation of mining design. However, due to the non-linear and dynamic nature of the economic and technical parameters influencing boundary delineation, determining the optimal mining boundary can be exceedingly challenging. Currently, most boundary optimization methods assume that block parameters remain fixed, which results in enterprises assuming a certain level of risk when facing changes in internal and external conditions. In this regard, this paper introduces the concept of "achievement degree" to reflect the risk associated with the results of boundary design. Using coal prices as an example, this article applies the predicted coal price curve to boundary optimization adjustments by specifying the "achievement degree" requirements for various time periods, thereby facilitating risk-controlled and economically optimal boundary decisions. Taking the illustrative case of an idealized small-scale inclined coal seam open-pit mine, adjustments to the boundary closely track variations in coal prices, further enhancing returns. The results demonstrate that the method proposed in this paper can increase overall revenue by approximately 51.15% within the forecast period, while effectively managing risks.


Asunto(s)
Minas de Carbón , Carbón Mineral , Minería , Medición de Riesgo , Gestión de Riesgos
13.
PLoS One ; 19(2): e0299328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394085

RESUMEN

At this stage, there are many dust-hazardous industries, and occupational pneumoconiosis has a high incidence for a long time. To solve the dust pollution problem in coal processing plant workshops, the dust particle field and liquid droplet particle field were numerically simulated using computational fluid dynamics (CFD), and the influences of the induced airflow and corridor wind speed on the internal airflow field of the workshop were investigated to derive the dust pollution mechanism in the coal plant workshop under the change in the wind flow field. In this study, it was shown that the wind flow rate in the coal processing plant workshop is mainly affected by the corridor wind speed, and the higher the corridor wind speed is, the higher the wind flow rate. The induced airflow mainly affected the direction of the wind flow field in the workshop. According to the conclusions obtained from the simulations, a spray dust reduction system was designed for the coal processing plant workshop and applied in the Huangyuchuan coal processing plant. On-site measurement revealed that the dust reduction effect inside the coal processing plant workshop is obvious, and the overall dust reduction efficiency in the workshop reaches more than 94%, which meets the requirements of environmentally sustainable development and clean production.


Asunto(s)
Minas de Carbón , Neumoconiosis , Humanos , Polvo/análisis , Contaminación Ambiental , Carbón Mineral/análisis
14.
Environ Res ; 247: 118392, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307178

RESUMEN

Intensive anthropogenic activities have led to drastic changes in land use/land cover (LULC) and impacted the carbon storage in high-groundwater coal basins. In this paper, we conduct a case study on the Yanzhou Coalfield in Shandong Province of China. We further classify waterbodies by using the Google Earth Engine (GEE) to better investigate the process of LULC transformation and the forces driving it in four periods from 1985 to 2020 (i.e., 1985-1995, 1995-2005, 2005-2015, and 2015-2020). We modeled the spatiotemporal dynamics of carbon storage by using InVEST based on the transformation in LULC and its drivers, including mining (M), reclamation (R), urbanization and village relocation (U), and ecological restoration (E). The results indicate that carbon storage had depleted by 19.69 % (321099.06 Mg) owing to intensive transformations in LULC. The area of cropland shrank with the expansion of built-up land and waterbodies, and 56.31 % of the study area underwent transitions in land use in the study period. U was the primary driver of carbon loss while E was the leading driver of carbon gain. While the direct impact of M on carbon loss accounted for only 5.23 % of the total, it affected urbanization and led to village relocation. R led to the recovery of cropland and the reclamation of water for aquaculture, which in turn improved the efficiency of land use. However, it contributed only 2.09 % to the total increase in carbon storage. Numerous complicated and intertwined processes (211) drove the changes in carbon storage in the study area. The work here provides valuable information for decision-makers as well as people involved in reclamation and ecological restoration to better understand the link between carbon storage and the forces influencing it. The results can be used to integrate the goals of carbon sequestration into measures for land management.


Asunto(s)
Minas de Carbón , Agua Subterránea , Humanos , Carbono , China , Carbón Mineral , Ecosistema , Conservación de los Recursos Naturales
15.
Environ Geochem Health ; 46(3): 94, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374291

RESUMEN

The mining and utilization of coal resources has not only promoted rapid economic development but also poses a potential threat to the ecological environment. The purpose of this study is to clarify the effects both of mining and land use types on the spatial distribution and particular sources of heavy metals in soil, using inverse distance weighted (IDW) and the Positive Matrix Factorization (PMF) model. A total of 99 topsoil and profile soil samples across different land use types and mining conditions were collected. The contamination of soil with Cd, Pb, and Hg in the research area was most severe, with the coefficient of variation (CV) of Hg being the largest, while also being heavily influenced by human activities. Severely polluted regions were mainly distributed in the center of the coal mining area, as well as near the highway. The contents of heavy metals for various land use patterns were ranked as follows: forestland > farmland > bare land > grassland > building land. Hg, Cd, Pb, Cr, and Zn had showed migration in the 0-60 cm depth range, and the enrichment factors (EFs) of Cd, Pb, Hg, and As in the soil profile were the most significant. The PMF demonstrated that the contributions of industrial activities and atmospheric deposition, transportation and mining activities, agricultural activities, and natural sources accounted for 31.25%, 28.13%, 22.24%, and 18.38%, respectively. The migration and deposition of atmospheric particulate matter from coal mining, transportation, and coal combustion under winds triggered heavy metal contamination in semi-arid areas of northern China. This phenomenon has important implications for the prevention and reduction of heavy metal pollution through various effective measures in coal-mining cities in northern China.


Asunto(s)
Minas de Carbón , Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , China , Mercurio/análisis , Carbón Mineral/análisis , Medición de Riesgo
16.
Sci Rep ; 14(1): 3748, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355650

RESUMEN

This study investigates the correlation between previous coal mine safety policies and accidents in China. Data on coal mine accidents and government regulatory information from 2008 to 2021 are collected. The characteristics of coal mine accidents are analyzed, and safety policy indexes are identified. An ordinary least squares (OLS) regression model is established to quantitatively analyze the correlation between accidents and safety policy. The study finds that safety policies have some impact on accident occurrence in coal mines. Although there has been a decrease in accidents and deaths over time, higher mortality rates are observed during periods of increased production intensity and on weekends. Gas accidents are the most common, followed by roof and flood accidents. The study concludes that national safety policies with wider coverage and a stronger system are effective in preventing accidents, but caution should be exercised to avoid reduced vigilance with decreasing death rates.


Asunto(s)
Minas de Carbón , Accidentes de Trabajo/prevención & control , Carbón Mineral , Políticas , China
17.
Artículo en Inglés | MEDLINE | ID: mdl-38359091

RESUMEN

A novel filamentous actinobacterium designated strain 4-36T showing broad-spectrum antifungal activity was isolated from a coal mining site in Mongolia, and its taxonomic position was determined using polyphasic approach. Optimum growth occurred at 30 °C, pH 7.5 and in the absence of NaCl. Aerial and substrate mycelia were abundantly formed on agar media. The colour of aerial mycelium was white and diffusible pigments were not formed. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain 4-36T formed a distinct clade within the genus Amycolatopsis. The 16S rRNA gene sequence similarity showed that the strain was mostly related to Amycolatopsis lexingtonensis DSM 44544T and Amycolatopsis rifamycinica DSM 46095T with 99.3 % sequence similarity. However, the highest digital DNA-DNA hybridization value to closest species was 44.1 %, and the highest average nucleotide identity value was 90.2 %, both of which were well below the species delineation thresholds. Chemotaxonomic properties were typical of the genus Amycolatopsis, as the major fatty acids were C15 : 0, iso-C16 : 0 and C16 : 0, the cell-wall diamino acid was meso-diaminopimelic acid, the quinone was MK-9(H4), and the main polar lipids were diphosphatidylglycerol, phosphatidylmethanolamine and phosphatidylethanolamine. The in silico prediction of chemotaxonomic markers was also carried out by phylogenetic analysis. The genome mining for biosynthetic gene clusters of secondary metabolites in strain 4-36T revealed the presence of 34 gene clusters involved in the production of polyketide synthase, nonribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptide, lanthipeptide, terpenes, siderophore and many other unknown clusters. Strain 4-36T showed broad antifungal activity against several filamentous fungi. The phenotypic, biochemical and chemotaxonomic properties indicated that the strain could be clearly distinguished from other species of Amycolatopsis, and thus the name Amycolatopsis mongoliensis sp. nov. is proposed accordingly (type strain, 4-36T=KCTC 39526T=JCM 30565T).


Asunto(s)
Actinomycetales , Minas de Carbón , Ácidos Grasos/química , Amycolatopsis , Antifúngicos/farmacología , Filogenia , ARN Ribosómico 16S/genética , Mongolia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Fosfolípidos/química
18.
PLoS One ; 19(2): e0297753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335229

RESUMEN

CO2 blasting has been identified as a potent method for enhancing the permeability of coal seams and improving gas drainage efficiency. This study is focused on elucidating the deformation and fracture mechanisms of coal and rock during CO2 blasting and on identifying the precursor characteristics of these processes. To this end, a CO2 blasting-induced coal rock fracture pressure model and a gas pressure distribution model were developed. The research utilized a self-developed CO2 blasting test platform along with a non-contact full-strain field measurement analysis system. Briquette samples were subjected to CO2 blasting tests under controlled experimental conditions, which included an axial pressure of 1.0 MPa and variable gas pressures of 0.5, 1.0, and 1.5 MPa. This methodology enabled the capture of the principal strain field on the surface of the samples. The Gray Level Co-occurrence Matrix (GLCM) was employed to extract and analyze the grayscale and texture features of the strain cloud maps, facilitating a quantitative assessment of their evolution. The aim was to pinpoint the precursor characteristics associated with coal rock cracking and crack propagation. The results revealed that: (1) During the cracking and subsequent propagation of samples, the strain field's grayscale histogram underwent a transformation from a "broad and low" to a "narrow and high" configuration, with a consistent increase in peak frequency. Specifically, at 3 ms, a primary crack was observed in the sample, evidenced by a grayscale peak frequency of 0.0846. By 9 ms, as the crack propagated, the grayscale peak frequency escalated to 0.1626. (2) The texture feature parameters experienced their initial abrupt change at 3ms. Correlation with the gas pressure distribution model indicated that this was the crack initiation moment in the sample. (3) A secondary abrupt shift in the texture feature parameters occurred at 9ms, in conjunction with experimental phenomena, was identified as the crack propagation phase. Monitoring the grayscale and texture features of the principal strain field on the coal rock surface proved effective in recognizing the precursor characteristics of crack initiation and propagation. This research has the potential to reduce blasting costs in coal mines, optimize blasting effects, and provided theoretical guidance for enhancing gas extraction efficiency from deep and low permeability coal seams.


Asunto(s)
Dióxido de Carbono , Minas de Carbón , Dióxido de Carbono/análisis , Carbón Mineral/análisis , Minas de Carbón/métodos , Permeabilidad
19.
Environ Sci Pollut Res Int ; 31(12): 18549-18565, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38345688

RESUMEN

High-intensity mining has become a major trend in future coal mining. However, it will unavoidably worsen the harm done to the natural environment of mining sites by coal mining, which is already prone to doing so. So, how may coal mining intensity (CMI) be decreased? Minimize the harm that coal mining causes to the environment and offer a theoretical basis for protecting the environment in mining sites. In order to achieve this, based on the existing literature on CMI, we first redefine the concept of CMI, analyze its influencing factors, propose an evaluation index system, and introduce the theory of set pair analysis (SPA) to build a quantitative evaluation model of CMI. We then propose an adjustment strategy for the CMI and conduct a verification analysis using the Halagou Coal Mine and Caojiatan Coal Mine as an example. The results show that the Halagou and Caojiatan Coal Mine belong to the higher-intensity mining stage. It is consistent with existing research. Moreover, the development trend of CMI in the Halagou Coal Mine is analyzed in conjunction with the set pair potential theory, and specific measures to reduce CMI are given, from the perspective of coal mining. It provides the basis for the source protection of the ecological environment in the mining area. Theoretically, this study can help both the quantitative assessment of mining intensity and the source protection of the mining ecological environment. Besides, it offers specific guidelines for building environmentally friendly mines.


Asunto(s)
Minas de Carbón , Minas de Carbón/métodos , Minería , Ambiente , Carbón Mineral/análisis , China
20.
J Environ Manage ; 354: 120280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350280

RESUMEN

Coal mining is one of the human activities that has the greatest impact on the global carbon (C) cycle and biodiversity. Biochar and plant growth-promoting bacteria (PGPB) have been both used to improve coal mining degraded soils; however, it is uncertain whether the effects of biochar application on soil respiration and microbial communities are influenced by the presence or absence of PGPB and soil nitrogen (N) level in coal mining degraded soils. A pot experiment was carried out to examine whether the effects of biochar addition (0, 1, 2 and 4% of soil mass) on soil properties, soil respiration, maize growth, and microbial communities were altered by the presence or absence of PGPB (i.e. Sphingobium yanoikuyae BJ1) (0, 200 mL suspension (2 × 106 colony forming unit (CFU) mL-1)) and two soil N levels (N0 and N1 at 0 and 0.2 g kg-1 urea- N, respectively). The results showed the presence of BJ1 enhanced the maize biomass relative to the absence of BJ1, particularly in N1 soils, which was related to the discovery of Lysobacter and Nocardioides that favor plant growth in N1 soils. This indicates a conversion in soil microbial communities to beneficial ones. The application of biochar at a rate of 1% decreased the cumulative CO2 regardless of the presence or absence of BJ1; BJ1 increased the ß-glucosidase (BG) activities, and BG activities were also positively correlated with RB41 strain with high C turnover in N1 soils, which indicates that the presence of BJ1 improves the C utilization rates of RB41, decreasing soil C mineralization. Our results highlight that biochar addition provided environmental benefits in degraded coal mining soils, and the direction and magnitude of these effects are highly dependent on the presence of PGPB and the soil N level.


Asunto(s)
Minas de Carbón , Zea mays , Humanos , Dióxido de Carbono/metabolismo , Suelo , Microbiología del Suelo , Carbón Orgánico/metabolismo , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...